Mesophase-pitch-based carbon fiber (MPCF) reinforced polymer (MPCFRP) composites show great potential for aerospace applications due to their excellent thermal conductivity and dimensional stability. However, the low compressive strength severely limits their application in high load-bearing areas. To address this issue, MPCF-A with a split-radial structure and MPCF-B with a skin-core structure were meticulously prepared by fiber structure regulation. The compression failure behavior of MPCFs at the monofilament and the microregion levels was investigated using the tensile recoil method and in-situ micropillar compression technique. MPCF-A exhibits the failure mode of petal-like lamellar separation due to axial crack penetrating along the (002) crystal plane of graphite layers, with the compressive strength of the core region (391 MPa) being higher than that of the skin region (360 MPa). Conversely, MPCF-B demonstrates a large transverse fracture in the skin region during damage, along with uniform microcracks in the core region. Notably, the compressive strength of the core region (547 MPa) significantly exceeds that of the skin region (456 MPa). Furthermore, the compressive strength of MPCF-B monofilaments (583 MPa) is higher than that of MPCF-A (462 MPa), attributed to factors such as the smaller graphite crystallite size (La = 36.54 nm, Lc = 26.75 nm), lower crystallite orientation (Z = 10.21°, R = 0.25), smaller pore size (Rg = 9.56 nm), and higher amorphous carbon content (g = 69.77%, K = 20.38). Consequently, the compressive strength of MPCFRP-B (232 MPa) is enhanced by 30.3% compared to MPCFRP-A.
Read full abstract