Introduction. The occurrence of severe consequences of accidents in the electrical networks of industrial facilities depends on how correctly the automated systems for protection, detection and extinguishing of fire are selected. One of the reasons for the occurrence of a fire hazardous situation in electrical networks is the violation of the insulation and sheath of the electrical cable due to its aging or mechanical damage. Timely detection of the pre-fire state of electrical equipment is ensured by using an automated control system for electrical equipment using a differential leakage current transformer (DLCT). The automated control system for electrical equipment using a differential leakage current transformer is designed for early detection of the location of current leakage in the protected power and (or) lighting group (the electric motor and the power cable supplying it and other parts of the electrical equipment) and the issuance of information to the post with permanent duty personnel. Targets and goals. Improving fire safety of industrial facilities by using an automated control system for electrical equipment using a differential leakage current transformer. Methods. To obtain the results, general scientific and special methods of scientific knowledge were used: analysis, synthesis, generalization, which were based on the provisions of the theory of probability and the theory of reliability. Research results. It is proposed to use DLCT for the protection of high-current electrical receivers in various sections of networks, taking into account selectivity as part of an automated fire prevention system. Conclusions. The use of an automated control system for electrical equipment upon detection of leakage currents makes it possible to: - timely detection of the place of occurrence of leakage currents, detection of the pre-fire condition of electrical cables by leakage currents; - transmission of information about the state of electrical cables to a higher level of the automated control system for electrical equipment; - disconnection of the cable line from power sources and power consumers on command from a programmable controller; - preventing the spread of fire along the cable route and along adjacent structural elements, enclosing structures and technological units; - activation of executive devices by the operator in an automated mode. Key words: accident, analysis, fire, explosion, risk, statistics, reliability, electrical equipment.
Read full abstract