Toxicity thresholds (ECx) for radish, tomato, and durum wheat growth endpoints (shoot length, shoot mass, root length) to Ce, Nd or Eu added to a black organic soil were determined from 14-day dose-response growth assays. EC10 expressed as total soil [REE] had a more than twenty-fold range, from 337 mg/kg to more than >8000 mg/kg. Averaged over all REEs and endpoints, durum wheat was more tolerant than radish and tomato; and averaged over all endpoints, Eu appeared to be the most phytotoxic of the three REEs. Bioaccessibility of each REE was determined by extraction with 0.01 M CaCl2, which for all three REEs in this soil was quite low, <0.10% of total. However, bioaccessibility of Eu was five or six times greater than that for Ce and Nd, and thus could explain its apparently greater toxicity, namely that Eu was more likely to be accumulated at the site of toxic action in the plant. To discern inherent toxicity from enhanced bioaccumulation, concentration of each REE in root and shoot tissues was determined, for a tissue-residue approach to toxicity assessment. The EC10 expressed as tissue concentration was lower for Nd than for Ce and Eu, thus the most toxic of the three REEs. As for many cationic inorganic elements, toxicity varies with the chemistry of the exposure medium due to its effects on bioaccessibility. Simple methods to harmonize toxicity thresholds from different media enables greater integration into regulatory standards. When EC25 from this and other studies were normalized to CaCl2-extractable REE in their respective media, the range in Ce EC25 was reduced from 20-fold to 2.5-fold, and the range for Eu EC25 was reduced from 25-fold to 3-fold. This novel and low-input approach to meta-analysis of toxicity thresholds demonstrates the value of considering soil physico-chemical properties as modifiers of soil REE toxicity.
Read full abstract