Mechanical force can trigger the predictable and precise release of small molecules from macromolecular carriers. In this article, based on mechanochemical simulations, we show that norborn-2-en-7-one (NEO), I, and its derivatives can selectively release CO, N2, and SO2 and produce two distinctly different products, A ((3E,5Z,7E)-dimethyl-5,6-diphenyldeca-3,5,7-triene-1,10-diyl bis(2-bromo-2-methylpropanoate)) and B (4',5'-dimethyl-4',5'-dihydro-[1,1':2',1''-terphenyl]-3',6'-diyl)bis(ethane-2,1-diyl) bis(2-bromo-2-methylpropanoate). Site-specific design in the pulling points (PP) ensures that by changing the regioselectivity, either A or B can be exclusively generated. Controlling the rigidity of the NEO scaffold by replacing a 6-membered ring with an 8-membered ring and concomitantly tuning the pulling groups makes it mechanolabile toward the selective formation of B. The diradical intermediate formed during I → A is predicted to be persistent for ∼150 fs. The structural design holds the key to the trade-off between mechanochemical rigidity and lability.