Ring chromosomes are known in many eukaryotic organisms, including humans. They are typically associated with a variety of maladies, including abnormal development and lethality. Underlying these phenotypes are anaphase chromatin bridges that can lead to chromosome loss, nondisjunction and breakage. By cytological examination of ring chromosomes in Drosophila melanogaster we identified five causes for anaphase bridges produced by ring chromosomes. Catenation of sister chromatids appears to be the most common cause and these bridges frequently resolve during anaphase, presumably by the action of topoisomerase II. Sister chromatid exchange and chromosome breakage followed by sister chromatid union also produce anaphase bridges. Mitotic recombination with the homolog was rare, but was another route to generation of anaphase bridges. Most surprising, was the discovery of homolog capture, where the ring chromosome was connected to its linear homolog in anaphase. We hypothesize that this is a remnant of mitotic pairing and that the linear chromosome is connected to the ring by multiple wraps produced through the action of topoisomerase II during establishment of homolog pairing. In support, we showed that in a ring/ring homozygote the two rings are frequently catenated in mitotic metaphase, a configuration that requires breaking and rejoining of at least one chromosome.