In this paper, a novel fractal model for the contact resistance based on axisymmetric sinusoidal asperity is proposed, which focuses on the resistance characteristics of the rough interface at a microscopic scale. By introducing the unique geometric shape of axisymmetric sinusoidal asperity, and combining it with a three-dimensional fractal theory, the micro-morphology characteristics of the rough interface can be characterized more precisely. Subsequently, by conducting a theoretical analysis and numerically solving the deformation mechanisms of asperities on the rough interface, a refined model for contact resistance is constructed. This research comprehensively employs theoretical analysis, numerical simulation, and experimental testing methods to deeply explore the current transmission mechanisms during the contact process of the rough interface. The findings suggest that the proposed model is capable of precisely capturing the intricate interplay of various factors, including contact area, contact load, and material properties, with the contact resistance. Compared to the existing models, the presented model demonstrates significant advantages in terms of prediction accuracy and practicality. This research provides an important theoretical basis and design guidance for optimizing the electrical performance of the rough interface, which has great significance for engineering applications.
Read full abstract