This paper is concerned with the following second-order three-point boundary value problemu″t+β2ut+λqtft,ut=0,t∈0 , 1,u0=0,u(1)=δu(η), whereβ∈(0,π/2),δ>0,η∈(0,1), andλis a positive parameter. First, Green’s function for the associated linear boundary value problem is constructed, and then some useful properties of Green’s function are obtained. Finally, existence, multiplicity, and nonexistence results for positive solutions are derived in terms of different values ofλby means of the fixed point index theory.