A minimal non-thermal dark matter model that can explain both the existence of dark matter and the baryon asymmetry in the universe is studied. It requires two color-triplet, iso-singlet scalars with OTeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}\\left(\ extrm{TeV}\\right) $$\\end{document} masses and a singlet Majorana fermion with a mass of OGeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}\\left(\ extrm{GeV}\\right) $$\\end{document}. The fermion becomes stable and can play the role of the dark matter candidate. We consider the fermion to interact with a top quark via the exchange of QCD-charged scalar fields coupled dominantly to third generation fermions. The signature of a single top quark production associated with a bottom quark and large missing transverse momentum opens up the possibility to search for this type of model at the LHC in a way complementary to existing monotop searches.