Owing to its promiscuous roles, poly (ADP-ribose) polymerase-1 (PARP-1) is involved in various neurological disorders including several retinal pathologies. Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus affecting the retina. In the present review, we highlight the importance of PARP-1 participation in pathophysiology of DR and discuss promising potential inhibitors for treatment. A high glucose level enhances PARP-1 expression; PARP inhibitors have gained attention due to their potential therapeutic effects in DR. They target different checkpoints (blocking nuclear transcription factor (NF-κB) activation; oxidative stress protection, influence on vascular endothelial growth factor (VEGF) expression, impacting neovascularization). Nowadays, there are several improved clinical PARP-1 inhibitors with different allosteric effects. Combining PARP-1 inhibitors with other compounds is another promising option in DR treatments. Besides pharmacological inhibition, genetic disruption of the PARP-1 gene is another approach in PARP-1-initiated therapies. In terms of future treatments, the limitations of single-target approaches shift the focus onto combined therapies. We emphasize the importance of multi-targeted therapies, which could be effective not only in DR, but also in other ischemic conditions.
Read full abstract