Following the conclusion of the COVID-19 pandemic, the persistent genetic variability in the virus and its ongoing circulation within the global population necessitate the enhancement of existing preventive vaccines and the development of novel ones. A while back, we engineered an orally administered probiotic-based vaccine, L3-SARS, by integrating a gene fragment that encodes the spike protein S of the SARS-CoV-2 virus into the genome of the probiotic strain E. faecium L3, inducing the expression of viral antigen on the surface of bacteria. Previous studies demonstrated the efficacy of this vaccine candidate in providing protection against the virus in Syrian hamsters. In this present study, utilizing laboratory mice, we assess the immune response subsequent to immunization via the gastrointestinal mucosa and discuss its potential as an initial phase in a two-stage vaccination strategy. Our findings indicate that the oral administration of L3-SARS elicits an adaptive immune response in mice. Pre-immunization with L3-SARS enhances and prolongs the humoral immune response following a single subcutaneous immunization with a recombinant S-protein analogous to the S-insert of the coronavirus in Enterococcus faecium L3.