A tentative study from the perspective of abrasive grain geometry in this paper is conducted to investigate the specific energy and energy efficiency for clarifying the robotic belt grinding mechanisms. The energy efficiency model is established based on the friction coefficient model of the single spherical grain, then the experiments and simulation are implemented to energetically evaluate the microscale material removal mechanisms from the specific energy contributions. It has been demonstrated that the specific plowing energy is more predominant than both the specific cutting and sliding energy in robotic belt grinding, resulting in the energy efficiency ranges between 17 and 41 %. Both the large grain size and normal contact force can be taken as optimization strategies to maximize the energy efficiency for material removal.
Read full abstract