Metals such as copper (Cu) enter marine environments from natural and anthropogenic sources, causing changes in the biodiversity of marine microalgae and cyanobacteria. Cu plays a dual role as either a micronutrient or toxicant depending on the environmental concentration. Many studies have summarized the potential of Cu to become more toxic to microalgae under environmental stress (for instance climate change).Most of the data available on Cu toxicity concerning microalgae and cyanobacteria have been produced using single-species laboratory tests, and there is still a significant gap in the information concerning the behavior of a group of algae exposed to environmental stressors. Thus, the objective of this study was to evaluate the toxicity of Cu at two concentrations (C1 = 2 μg L−1 and C2 = 5 μg L−1) in multispecies bioassays using three phytoplankton species (one cyanobacteria, Synechococcus sp., and two microalgae, Chaetoceros gracilis and Pleurochrisys cf. roscoffensis). Combinations of two temperatures (20 and 23 °C) and two salinities (33 and 36 PSU), were applied in a 96 h study using flow cytometry analysis (FCM). Algal growth and reactive oxygen species (ROS) production by 2′7′-dichlorofluorescein (DCFH) were monitored by FCM. The results indicated that Synechococcus sp. was more sensitive than C. gracilis and P. roscoffensis to Cu stress at a temperature 23 °C and salinity of 36 PSU under both concentrations of Cu. Chlorophyll a fluorescence showed a significant decrease (p < 0.05) in Synechococcus sp. under 5 μg L−1 of Cu in the combined treatment of 20 °C and 33 PSU; however, there was a significant increase in P. roscoffensis in all combinations at C2 = 5 μg L−1 compared to the control with no Cu, indicating a potential hormetic response to Cu for P. roscoffensis. ROS levels were triggered in a combination of 23 °C and 33 PSU and 5 μg L−1 of Cu, which was higher than all the other combinations studied. Our study resulted in data concerning the potential impacts caused by possible future climate change scenarios in aquatic habitats chronically exposed to metals.
Read full abstract