The field analysis of a single-sided linear induction motor (LIM) taking end effect into consideration is carried out. A suitable model is used to establish the two components of secondary current density and the air gap field intensity, these components, beside the force density are carried out through the three regions model. The drive force acting on a conducting secondary sheet is calculated and plotted as functions of the speed, taking the length of secondary ends as parameter. The motor speed can be controlled by changing the displaced angle φ of the electric loading wave in the second stator phase. The equivalent circuit parameters are determined here in terms of the machine geometry by a new suggested method. These parameters are plotted as function of the motor speed for different secondary ends.