Medium- and long-chain fatty acids and glycerol contained in the oily fraction of many food-industry effluents are excellent candidates to produce biobased high-value triacylglycerides (TAGs) and polyhydroxyalkanoates (PHAs). The typical process configuration for TAGs recovery from lipid-rich streams always includes two steps (culture enrichment plus storage compounds accumulation) whereas, for PHAs production, an additional pretreatment of the substrate for the obtainment of soluble volatile fatty acids (VFAs) is required. To simplify the process, substrate hydrolysis, culture enrichment, and accumulation (TAG and PHA storage) were coupled here in a single sequencing batch reactor (SBR) operated under the double growth limitation strategy (DGL) and fed in pulses with industrial waste fish oil during the whole feast phase. When the SBR was operated in 12h cycles, it was reached up to 51wt % biopolymers after only 6h of feast (TAG:PHA ratio of 50:51; 0.423 CmmolBIOP/CmmolS). Daily storage compound production was observed to be over 25% higher than the reached when enrichment and accumulation stages were carried in separate operational units. Increasing the feast phase length from 6 to 12h (18h cycle) negatively affected the DGL strategy performance and hence system storage capacity, which was recovered after also extending the famine phase in the same proportion (24h cycle). Besides, the carbon influx during the feast phase was identified as a key operational parameter controlling storage compounds production and, together with the C/N ratio, culture selection. The different cycle configurations tested clearly modulated the total fungal abundances without no significant differences in the size of the bacterial populations. Several PHA and TAG producers were found in the mixed culture although the PHA and TAG productions were poorly associated with the increased relative abundances (RAs) of specific operational taxonomic units (OTUs).
Read full abstract