In many robotic applications, creating a map is crucial, and 3D maps provide a method for estimating the positions of other objects or obstacles. Most of the previous research processes 3D point clouds through projection-based or voxel-based models, but both approaches have certain limitations. This paper proposes a hybrid localization and mapping method using stereo vision and LiDAR. Unlike the traditional single-sensor systems, we construct a pose optimization model by matching ground information between LiDAR maps and visual images. We use stereo vision to extract ground information and fuse it with LiDAR tensor voting data to establish coplanarity constraints. Pose optimization is achieved through a graph-based optimization algorithm and a local window optimization method. The proposed method is evaluated using the KITTI dataset and compared against the ORB-SLAM3, F-LOAM, LOAM, and LeGO-LOAM methods. Additionally, we generate 3D point cloud maps for the corresponding sequences and high-definition point cloud maps of the streets in sequence 00. The experimental results demonstrate significant improvements in trajectory accuracy and robustness, enabling the construction of clear, dense 3D maps.
Read full abstract