We report an unexpected experimental observation in rotation-resolved N2+ lasing that the R-branch lasing intensity from a single rotational state in the vicinity of 391 nm can be greatly stronger than the P-branch lasing intensity summing over the total rotational states at suitable pressures. According to a combined measurement of the dependence of the rotation-resolved lasing intensity on the pump-probe delay and the rotation-resolved polarization, we speculate that the destructive interference can be induced for the spectrally-indistinguishable P-branch lasing due to the propagation effect while the R-branch lasing is little affected due to its discrete spectral property, after precluding the role of rotational coherence. These findings shed light on the air-lasing physics, and provide a feasible route to manipulate air lasing intensity.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access