Interleukin 1 receptor antagonist (IL1RN) is a competitive inhibitor of interleukin 1 (IL-1). Natural killer cells (NK cells) contribute to the elimination of viruses by their antiviral effector function, which depends on a balance between inhibitory and activating receptor genes such as NKG2D and NKG2A. Using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assays, the association of intronic single-nucleotide polymorphisms (SNPs) in these genes with viral infection were assessed in 111 patients with hepatitis E virus (HEV) infection and 222 HEV-naive healthy controls. An SNP in the IL1RN (VNTR) gene revealed allele 2 to be associated with protection against HEV infection (IL1RN *1/*1 vs. IL1RN *2/*2, OR = 0.26, 95% CI = 0.14-0.47, p < 0.001). Similarly, a polymorphism in the intronic region of NKG2A revealed an association with protection in a co-dominant model (A/A vs. A/G: OR = 0.40; 95% CI = 0.24-0.67; A/A vs. G/G: OR = 0.25; 95% CI = 0.10-0.57; p < 0.05) and an association with susceptibility in a dominant model (A/A + A/G vs. G/G: OR = 2.28; 95% CI = 1.06-4.93; p < 0.05) and a recessive model (AA vs. AG + GG: OR = 2.71; 95% CI = 1.66-4.48; p < 0.001). Our data suggest that genetic polymorphisms in host NKG2A and IL1RN have both protective and detrimental roles in HEV infection, although their impact on disease outcome remains unknown.
Read full abstract