Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.
Read full abstract