The Single Linear Induction Motor (SLIM) is a specialized electrical machine that produces linear motion instead of the rotary motion produced by a traditional rotary induction motor. SLIM's accurate dynamic model is required to analyze the performance of the motor under different operating conditions. Dynamic modelling of SLIM using the traditional DQ- axis equivalent circuits is difficult due to the time-varying parameters such as end effect, air gap flux, saturation, and half-filled slot. The two methods for modelling SLIMs were compared, namely the conventional method and the split method. The results of the comparison showed that both methods provided similar results, but the split method offered a more detailed analysis of the components and provided deeper insight into the behavior of the motor. The choice between the two methods depends on the specific requirements and objectives of the analysis. In this paper, the dynamic model of SLIM is modelled using conventional and split methods in MATLAB/SIMULINK. The results of the two modelling methods are compared with each other, and it is concluded that the splitting method provides better transient performance than traditional D-Q axis methods.
Read full abstract