ABSTRACT We have analysed the emission-line properties of 6019 Type II active galactic nuclei (AGNs) at redshifts in the range 0.4–0.8 with [O iii] luminosities greater than $3 \times 10^8 \, \mathrm{L}_{\odot }$, characteristic of the Type II quasars first identified in population studies by Zakamska et al. The AGNs are drawn from the CMASS sample of galaxies with stellar masses greater than $10^{11} \, \mathrm{M}_{\odot }$ that were studied as part of the Baryon Oscillation Spectroscopic Survey (BOSS) and comprise 0.5 per cent of the total population of these galaxies. Individual spectra have low S/N, so the analysis is carried out on stacked spectra in bins of [O iii] luminosity and estimated stellar age. The emission line ratios of the stacks are well fit with simple uniform-density photoionization models with metallicities between solar and twice solar. In the stacks, a number of emission lines are found to have distinct broad components requiring a double Gaussian rather than a single Gaussian fit, indicative of outflowing ionized gas. These are: [O iii] λ4959, [O iii] λ5007, [O ii] λ3727,3729, and H αλ6563. Higher ionization lines such as [Ne iii] λ3869 and [Ne v] λ3345 are detected in the stacks, but are well fit by single Gaussians. The broad components typically contain a third of the total line flux and have widths of 600 km s−1 for the oxygen lines and 900 km s−1 for H α. The fraction of the flux in the broad component and its width are independent of [O iii] luminosity, stellar age, radio, and mid-IR luminosity. The stellar mass of the galaxy is the only parameter we could identify that influences the width of the broad line component.