In this paper, dual-chirped arbitrary microwave waveform has been generated through photonics, incorporated with single dual parallel mach-zehnder modulator (DPMZM) inbuilt mach zehnder interferometer (MZI) structure. We have taken two cases of chirping, i.e., linear and nonlinear chirps. A case of linear chirping has been explored previously. However, to the best of the authors' knowledge effect of nonlinear chirping in this paper is evaluated for the first time. Other photonics approaches are also available, such as spectra shaping and wavelength to time mapping. But due to fixed spectral response of spectral shaper, center frequency of linear chirp generated waveform is fixed. To get large center frequency again we have to use large number of spectral shapers which will increase the system complexity. DPMZM avoids such difficulties. These MZMs are biased at the minimum transmission point to get carrier suppressed modulation. Product modulator (PM) is cascaded to the lower arm of DPMZM. Here by using DPMZM we get two advantages. First we have two complimentarily chirped microwave waveforms and second up conversion of the frequency of microwave carrier. A dual-chirped microwave waveform with centre frequency 6 GHz with bandwidth 200 MHz and 2 GHz is generated. The paper gives specific details about various performance parameters such as input signal frequency and power, output signal parameters viz output frequency, chirp rate, chirp bandwidth, time bandwidth product (TBW), etc. The overall model and its performance parameters are computed through MATLAB simulation.
Read full abstract