A recent study reported the rapid growth of SiC single crystals of ~1.5 mm/h using high-purity SiC sources obtained by recycling CVD-SiC blocks used as materials in semiconductor processes. This method has gained attention as a way to improve the productivity of the physical vapor transport (PVT) method, widely used for manufacturing single crystal substrates for power semiconductors. When recycling CVD-SiC blocks by crushing them for use as sources for growing SiC single crystals, the properties and the particle size distribution of the material differ from those of conventional commercial SiC powders, making it necessary to study their effects. Therefore, in this study, SiC single crystals were grown using the PVT method with crushed CVD-SiC blocks of various sizes as the source material, and the growth behavior was analyzed. Simulation results of the temperature distribution in the PVT system confirmed that using large, crushed blocks as the SiC source material generates a greater temperature gradient within the source compared to conventional commercial SiC powder, making it advantageous for rapid growth processes. Additionally, when the large, crushed blocks were vertically aligned, good crystal quality was experimentally achieved at high growth rates, even under non-optimized growth conditions.
Read full abstract