Chemical separations, mostly based on heat-driven techniques such as distillation, account for a large portion of the world's energy consumption. In principle, differential adsorption is a more energy-efficient separation method, but conventional adsorbent materials are still not effective for many industry-relevant mixtures. Porous coordination polymers (PCPs), or metal-organic frameworks (MOFs), are attractive for their well-defined, designable, modifiable, and flexible structures connecting to various potential applications. While the importance of the structural flexibility of MOFs in adsorption-based functions has been demonstrated, the understanding of this special feature is still in its infancy and mostly stays at the periodic structural transformation at the equilibrium state and the special shapes of single-component adsorption isotherms. There are many confusions about the categorization and roles of various types of flexibility. This Account discusses the role of flexibility of MOFs for adsorptive separation, mainly from the thermodynamic and kinetic points of view.As the classic type of framework flexibility, guest-driven structural transformations and the corresponding adsorption isotherms can be thermodynamically described by the energies of the host-guest system. The highly guest-specific pore-opening action showing contrasting single-component adsorption isotherms is regarded as a strategy for achieving molecular sieving without the need for aperture size control, but its effect and role for mixture separation are still controversial. Quantitative mixture adsorption/separation experiments showed that the common periodic (cooperative) pore-opening action leads to coadsorption of molecules smaller than the opened aperture, while the aperiodic (noncooperative) one can achieve inversed molecular sieving under a thermodynamic mechanism.The energy barrier and structure in the nonequilibrium state are also important for flexibility and adsorption/separation. With suitable energy barriers between metastable structures, new types of framework flexibility such as aperture gating can be realized. While kinetically controlled gating flexibility is usually ignored because of the difficulty of characterization or considered as disadvantageous for separation because of the variable aperture size, it plays a critical role in most kinetic separation systems, including adsorbents conventionally regarded as rigid. With the concept of gating flexibility, the meanings of aperture and guest sizes for judging molecular sieving need to be reconsidered. Gating flexibility depends on not only the host itself but also the guest, the host-guest interaction, and the external environment such as temperature, which can be rationally tuned to achieve special adsorption/separation behaviors such as inversed temperature dependence, molecular sieving, and even inversed thermodynamic selectivity. The comprehensive understanding of the thermodynamic and kinetic bases of flexibility will give a new horizon for next-generation separation materials beyond MOFs and adsorbents.
Read full abstract