Particle image velocimetry and particle tracking velocimetry (PTV) have developed from two-dimensional two-component (2D2C) velocity vector measurements to 3D3C measurements. Rainbow particle tracking velocimetry is a low-cost 3D3C measurement technique adopting a single color camera. However, the vector acquisition rate is not so high. To increase the number of acquired vectors, this paper proposes a high probability and long-term tracking method. First, particles are tracked in a raw picture instead of in three-dimensional space. The tracking is aided by the color information. Second, a particle that temporarily cannot be tracked due to particle overlap is compensated for using the positional information at times before and after. The proposed method is demonstrated for flow under a rotating disk with different particle densities and velocities. The use of the proposed method improves the tracking rate, number of continuous tracking steps, and number of acquired velocity vectors. The method can be applied under the difficult conditions of high particle density (0.004 particles per pixel) and large particle movement (maximum of 60 pix).