The piezo-phototronic effect utilizes the piezoelectric polarization field to tune the photogenerated carrier separation and transport performance in heterojunctions, which portrays a promising strategy for addressing energy shortage and environmental pollutants. Herein, a novel Z-scheme piezoelectric semiconductor heterojunction, 2D-KNbO3/1D-CdS-x (KNCS-x), was fabricated using hydrothermal and solvothermal methods, resulting in enhanced redox capacity. Under the simultaneous light and strain, KNCS-15 exhibits the highest piezo-photocatalytic activity, with degradation rates of tetracycline hydrochloride degradation rate constant, H2O2 as well as H2 production rates being 1.806 × 10−2s−1, 45.56 mM·h−1·g−1 and 8.87 mmol·h−1·g−1, respectively, which are 1.4, 2.4 and 1.9 times of photocatalysis alone, and 9.8, 9.2 and 9.8 times of piezocatalysis alone. DFT calculations, EPR and PALS indicate that the Z-scheme structure realizes effective separation of electron-hole pairs with strong redox ability and a higher carrier concentration. The enhanced catalytic activity is attributed to the introduction of piezoelectric potential, which facilitates improved spatial separation of electrons with high reduction and holes with high oxidation potential.