In this paper, the results of numerical simulations of open-channel flow through boulder arrays at varying Froude numbers are reported. The simulations aim at clarifying the role of the Froude number on flow, turbulence, and hyporheic exchange. At low and intermediate Fr, the boulder top is above the water surface, and time-averaged streamwise flow velocity, Reynolds shear stresses, and the turbulent kinetic energy (TKE) are relatively low in the wake of boulders. Conversely, at high Fr values, the boulders are submerged, hence the flow separates at the boulder crest, creates vertical recirculation, and reattaches on the bed downstream, resulting in an area of elevated Reynolds shear stresses and TKE downstream of the boulders. Two dominant turbulence structures are observed: (i) flapping of boulder wakes with a characteristic length of 2.1 times the boulder diameter (D) at low and intermediate Fr and (ii) an upstream oriented hairpin vortex with a length scale of 1.0D at high Fr. These turbulence structures influence hyporheic exchange downstream of boulders within a limited region of x/D<2.0. In other locations, hyporheic flow is driven by downwelling flow immediately upstream of boulders with a wavelength larger than 2.9D. Finally, the normalized time-averaged hyporheic flux increases with increasing Fr, but it decreases at higher Fr values once the overtopping flow disrupts the formation of the boulder wake.
Read full abstract