Population and species persistence in a rapidly warming world will be determined by an organism's ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unknown. We aimed to disentangle the effects of two critical ontogenetic stages (juvenile development and reproduction) to the new-generation acclimation potential, by exposing the spiny chromis damselfish Acanthochromis polyacanthus to simulated ocean warming across two generations. By using hepatic transcriptomics, we discovered that the post-hatching developmental environment of the offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the developmental experience of parents increased regulatory RNA production and protein synthesis, which could improve the offspring's response to warming. Conversely, parental reproduction and offspring embryogenesis in warmer water elicited stress response mechanisms in the offspring, with suppression of translation and mitochondrial respiration. Mismatches between parental developmental and reproductive temperatures deeply affected offspring gene expression profiles, and detrimental effects were evident when warming occurred both during parents' development and reproduction. This study reveals that the previous generation's developmental temperature contributes substantially to thermal acclimation potential during early life; however, exposure at reproduction as well as prolonged heat stress will likely have adverse effects on the species' persistence.