Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF's capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF's surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
Read full abstract