Fully automatic finite element (FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys, is of great significance in assessing structural integrity and presents tremendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model (CZM). The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology, integrating the developed criterion, the CZM to model the crack, a simple remeshing procedure to accommodate crack propagation, the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials, and a local arc-length solver to the nonlinear equation system, is developed and implemented in an in-house program. Three examples, i.e., a plain concrete beam with a single shear crack, a reinforced concrete (RC) beam with multiple cracks and a compact-tension steel specimen, are simulated. Good agreement between numerical predictions and experimental data is found, which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.
Read full abstract