Self-oscillation enables continuous motion by transforming constant external stimuli into mechanical work, eliminating the necessity for supplementary control systems. This holds considerable promise in domains like actuators, wearable devices and biomedicine. In the current study, a novel suspended liquid crystal elastomer (LCEs) ball system consisting of a light-responsive hollow LCE ball and an air blower is constructed. Stable illumination allows for its continuous periodic oscillation. Drawing from the theoretical model in conjunction with the dynamic LCE model, the control equations for the system are established, and its dynamic motion characteristics are explored from theoretical viewpoint. The numerical calculations suggest that two motion patterns are present, i.e., hovering and self-oscillatory patterns. The critical conditions required to initiate the transition between two motion patterns are quantified for different system parameters. As evidenced by the outcomes, manipulating the light intensity, damping coefficient, contraction coefficient, air density, gravitational acceleration, bottom illumination zone height, characteristic coefficient and vertical wind speed at the blower outlet facilitates precise control over the motion patterns as well as the amplitude and frequency. With its simple structure, customizable dimensions, remote activation and active manipulation, this system may potentially change the design approach for energy harvesting, microsensors and aerial vehicles.
Read full abstract