A novel dual-cloud point extraction (dCPE) technique is proposed in this paper for the sample pretreatment of capillary electrophoresis (CE) speciation analysis of mercury. In dCPE, cloud point was carried out twice in a sample pretreatment. First, four mercury species, methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) formed hydrophobic complexes with 1-(2-pyridylazo)-2-naphthol (PAN). After heating and centrifuging, the complexes were extracted into the formed Triton X-114 surfactant-rich phase. Instead of the direct injection or analysis, the surfactant-rich phase containing the four Hg species was treated with 150 μL 0.1% (m/v) l-cysteine aqueous solution. The four Hg species were then transferred back into aqueous phase by forming hydrophilic Hg– l-cysteine complexes. After dCPE, the aqueous phase containing the Hg– l-cysteine complexes was subjected into electrophoretic capillary for mercury speciation analysis. Because the concentration of Triton X-114 in the extract after dCPE was only around critical micelle concentration, the adsorption of surfactant on the capillary wall and its possible influence on the sample injection and separation in traditional CPE were eliminated. Plus, the hydrophobic interfering species were removed thoroughly by using dCPE resulted in significant improvement in analysis selectivity. Using 10 mL sample, 17, 15, 45, and 52 of preconcentration factors for EtHg, MeHg, PhHg, and Hg(II) were obtained. With CE separation and on-line UV detection, the detection limits were 45.2, 47.5, 4.1, and 10.0 μg L −1 (as Hg) for EtHg, MeHg, PhHg, and Hg(II), respectively. As an analysis method, the present dCPE–CE with UV detection obtained similar detection limits as of some CE–inductively coupled plasma mass spectrometry (ICPMS) hyphenation technique, but with simple instrumental setup and obviously low costs. Its utilization for Hg speciation was validated by the analysis of the spiked natural water and tilapia muscle samples.
Read full abstract