Laboratory description of clay normally distinguishes the scale of atoms from the scale of clay particles and aggregates. Contemporary constitutive models for clay tend to ignore this scale separation, and rather focus on phenomenology. By considering scale separation, this paper introduces a robust physics-based phenomenological constitutive model for clay that qualitatively captures their broad spectrum of rate-dependent mechanical features. The model is derived using the thoroughly rigorous hydrodynamic procedure. While some imagine that by considering rigour and physics, their models would get complicated, the resulting set of equations reveal a surprising degree of simplicity. The derivation strongly benefits from the principle of two-stage irreversibility, which describes energy flow within the material from the continuum scale down to the atomistic micro-scale, through the meso-scale of clay aggregates. While thermal and meso-related temperatures capture atomistic and clay aggregate fluctuating motions, a sink term from the latter to the former underpins the direction of the energy flow. The model’s standout feature is in pinpointing new transport coefficients that drive both volumetric and shear plastic flows in a thermodynamically coupled manner. A novel scheme is then proposed to calibrate these coefficients from conventional steady-state observations. Thanks to the formulation the model shows a remarkable level of predictiveness, despite being relatively simple mathematically. In particular, the model readily explains the broad spectrum of rate-dependent phenomena during transient loading, along with creep and relaxation processes. Given the generality of hydrodynamics, it is anticipated that the new model could be expanded to capture fluid-solid transitions between liquid-like soft mud and plastic-like stiff clay responses, contingent on water content variations.
Read full abstract