Considering the high incidence of breast cancer, a sensitive and specific approach is crucial for its early diagnosis and follow-up treatment. Folate receptors (FR), which are highly expressed on the epithelial tissue such as breast cancer cells (e.g., MCF-7), have been used in cancer diagnosis and bioimaging. This study presents an innovative colorimetric and fluorescence bioimaging platform towards MCF-7 using folic acid (FA)-conjugated iron-oxide magnetite silica-based nanocomposite (Fe3O4@SiO2-3-aminopropyl)triethoxysilane (APTES-NH2)@cysteine (Cyt)-Cyt@FA). For identification of MCF-7, the polyvinylpyrrolidone (PVP)-capped-platinum (Pt) nanoparticle was utilized as a nanozyme to catalyze the reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 for visual detection of MCF-7 cells. Colorimetric changes are detectable by the naked eye and spectrophotometry at the wavelength of 450nm, with a linear range of 50-5000 cells/mL and a detection limit of 30 cells/mL. The Fe3O4@SiO2-APTES-NH2@Cyt-Cyt@FA complex was modified with rhodamine B as a fluorescence bioimaging probe to monitor FR-overexpressed MCF-7 cells. The nanocomposite is biocompatible with a toxicity threshold of about 800µg/mL. These methodologies facilitate bioimaging and colorimetric assays without sophisticated instrumentation, offering high specificity, sensitivity, repeatability, and stability, making them suitable as versatile methods for detecting and bioimaging cancer cells.
Read full abstract