AbstractOptimizing phosphorus (P) application in corn (Zea mays L.) silage production systems to align with crop P requirements while sustaining soil test P (STP) levels can help mitigate environmental risks and enhance farm profitability. The objectives of this study were to characterize P balances of corn silage fields in New York, their drivers, relationships between P balances and field STP and nitrogen (N) balances, as well as the impact of manure application practices on balances. Field‐level balances (supply–uptake) for P and N were derived for 994 field observations across eight dairy farms and 5 years. On average, P balances were low (11 kg P ha−1) with a wide range across farm averages (−11 to 30 kg P ha−1). Across farms, P was applied at higher rates to fields with adequate STP than to lower STP fields, indicating potential opportunities for reallocation of P within farms. Phosphorus balances were positively related to N balances. Manure nutrient utilization indicated that N‐based applications would lead to large positive P balances in all farms. Phosphorus‐based manure applications could cover on average 51% of corn N requirements under current farm manure application practices. This could be increased up to 85% when maximizing the utilization of manure inorganic N. Management alternatives to prevent excessive P balances include improving diet formulation to reduce P excretion, reducing animal density, exporting manure, implementing manure treatment technologies that conserve N and/or remove P, combining appropriate rates of manure and fertilizer, and maximizing manure inorganic N utilization in field applications.
Read full abstract