Increasing numbers of animal studies have shown that repeat sevoflurane exposure during developmental stage may lead to long-term cognitive impairment. Nevertheless, the exact pathogenesis remains unclear. Interleukin 17A (IL-17A) has been associated with cognitive decline in various neurological disorders. Here we found that the expression of IL-17A was up-regulated in hippocampus of sevoflurane exposed neonatal mice. Genetic deletion of IL-17A or inhibition of IL-17A improved behavioral function and down-regulated neuroinflammation related genes, interleukin 1β (IL-1β), interleukin 6 (IL-6), Nicotinamide adenine dinucleotide phosphate(NADPH) oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) in hippocampus of sevoflurane exposed neonatal mice. Moreover, negative regulation of IL-17A/Interleukin 17A receptor(IL-17RA) promoted the extracellular signal-regulated protein kinase (ERK) signaling pathway and nucleation of cyclic adenosine monophosphate (cAMP) response element-binding (CREB) in neurons of cognitive impaired mice. Knockdown of IL-17A in vivo identified neurons-localized IL-17A as a major factor in neuroinflammation and neurodevelopment. Collectively, our results suggested that IL-17A was required for the pathogenesis of neuroinflammatory response and identify IL-17A as a potential therapeutic target for cognitive impairment exposed by general anesthetics during infancy.
Read full abstract