Immune evasion is one of the mechanisms by which cancer cells acquire immunity during cancer development and progression. One of these is the increased expression of cluster of differentiation 47 (CD47), a transmembrane glycoprotein that protects cells from phagocytic elimination. The interaction between CD47 and signal regulatory protein alpha (SIRPα) on macrophages alleviates the phagocytic signal. The present group previously reported high CD47 expression in cholangiocarcinoma (CCA), a major health problem in Thailand and East Asia, and that blocking CD47 using anti-CD47 antibodies promoted the removal of CCA. However, the mechanism through which CD47 inhibition attenuates CCA growth remains unclear. This study explored the clinical significance of targeting CD47 in CCA. Expression levels of CD47 and the macrophage marker CD68 were determined in CCA tissues by immunohistochemistry and correlated with clinical parameters. The role of CD47 in CCA cells was established using CD47-deficient KKU-213A CCA clones in vitro and in vivo. The results showed that CD47 was highly expressed in CCA tissues and significantly correlated with lymph node metastasis (P = 0.038). Moderate-to-dense CD68-positive infiltrating cells in CCA tissues were significantly associated with shorter survival of patients (P = 0.019) and were an independent prognostic factor of CCA patients as determined by the Cox proportional hazard model (hazard ratio, 2.040; 95 % confidence interval, 1.109–3.752; P = 0.022). Three CD47-deficient KKU-213A clones (#19, #23, and #28) were generated. The elimination of CD47 did not affect cell proliferation but increased monocyte-derived macrophage-mediated phagocytosis in vitro. Decreased tumor weights and volumes were observed in mice injected with CD47-deficient CCA clones. This revealed a significant role for CD47 in CCA, with a focus on protecting cancer cells from macrophage phagocytosis.
Read full abstract