Functional near-infrared spectroscopy (fNIRS) is a viable non-invasive technique for functional neuroimaging in the cochlear implant (CI) population; however, the effects of acoustic stimulus features on the fNIRS signal have not been thoroughly examined. This study examined the effect of stimulus level on fNIRS responses in adults with normal hearing or bilateral CIs. We hypothesized that fNIRS responses would correlate with both stimulus level and subjective loudness ratings, but that the correlation would be weaker with CIs due to the compression of acoustic input to electric output. Thirteen adults with bilateral CIs and 16 with normal hearing (NH) completed the study. Signal-correlated noise, a speech-shaped noise modulated by the temporal envelope of speech stimuli, was used to determine the effect of stimulus level in an unintelligible speech-like stimulus between the range of soft to loud speech. Cortical activity in the left hemisphere was recorded. Results indicated a positive correlation of cortical activation in the left superior temporal gyrus with stimulus level in both NH and CI listeners with an additional correlation between cortical activity and perceived loudness for the CI group. The results are consistent with the literature and our hypothesis. These results support the potential of fNIRS to examine auditory stimulus level effects at a group level and the importance of controlling for stimulus level and loudness in speech recognition studies. Further research is needed to better understand cortical activation patterns for speech recognition as a function of both stimulus presentation level and perceived loudness.
Read full abstract