This paper is concerned with the existence of positive radial solutions of the following resonant elliptic system: \t\t\t{−Δu=uv+f(|x|,u),0<R1<|x|<R2,x∈RN,−Δv=cg(u)−dv,0<R1<|x|<R2,x∈RN,∂u∂n=0=∂v∂n,|x|=R1,|x|=R2,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} -\\Delta u=uv+f( \\vert x \\vert ,u), & 0< R_{1}< \\vert x \\vert < R_{2}, x\\in \\mathbb{R}^{N}, \\\\ -\\Delta v=cg(u)-dv, & 0< R_{1}< \\vert x \\vert < R_{2}, x\\in \\mathbb{R}^{N}, \\\\ \\frac{\\partial u}{\\partial \\textbf{n}}=0= \\frac{\\partial v}{\\partial \\textbf{n}},& \\vert x \\vert =R_{1}, \\vert x \\vert =R_{2}, \\end{cases} $$\\end{document} where mathbb{R}^{N} (Ngeq 1) is the usual Euclidean space, n indicates the outward unit normal vector, fin C([R_{1},R_{2}]times [0,infty ),mathbb{R}), gin C([0,infty ),[0,infty )), and c and d are positive constants. By employing the classical fixed point theory we establish several novel existence theorems. Our main findings enrich and complement those available in the literature.