AbstractTwo types of heavy rainfall, namely warm-sector and frontal heavy rainfall, coexist in South China during the presummer rainy season and manifest as varying mechanisms and features. They both exhibit close relationships with two types of low-level jets (LLJs): the boundary layer jet (BLJ) and synoptic-system-related low-level jet (SLLJ), but in different ways. The motivation of the present study is to elucidate the statistical relations between the two types of heavy rainfall and LLJs over South China using TRMM rainfall data and ERA5 reanalysis. Generally, warm-sector heavy rainfall mainly occurs over coastal areas and during the early morning, which is primarily caused by the interaction between the nocturnal BLJ and land breeze. In contrast, frontal heavy rainfall is mostly concentrated in inland regions and modulated by distinct diurnal forcings at different locations. Statistical analysis indicates that 76% (62%) of the warm-sector (frontal) heavy rainfall events are associated with LLJs. In the presence of heavy rainfall, low-level winds are often strengthened over Beibu Gulf, northern South China Sea, and the south side of fronts, corresponding to two branches of southerly BLJs at ~950 hPa over the ocean and the southwesterly SLLJs at ~850–700 hPa on land, respectively. Furthermore, BLJs are shown to be linked to both types of heavy rainfall and with the most frequent occurrences of rainfall in their exit region, whereas SLLJs are more closely associated with frontal heavy rainfall. The left side (entrance) of the SLLJ axis is favorable for frontal (warm-sector) heavy rainfall production. The regional rainfall distributions are affected by the structures and locations of LLJs.