The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.