The nuclear localization signals (NLS) were usually composed of basic residues (K and R) and played an important role in delivery of genomes and structural protein into nucleus. In this research, we identified that 3Dpol/3CD entered into nucleus during viral propagation of duck hepatitis A virus type 1 (DHAV-1). To investigate the reason that 3Dpol/3CD entered into nucleus, the amino acid sequence of 3CD was analyzed through NLS Mapper program. The basic region 17PRKTAYMRS25 was subsequently proved to be a functional NLS to guide 3Dpol/3CD into nucleus. 18R, 19K and 24R were found essential for maintaining the nuclear targeting activity, and exchange between 24R and 24K had no impact on cellular localization of 3Dpol. Since the entry of 3Dpol/3CD into nucleus was essential for shutoff of host cell transcription and maintaining the viral propagation of picornavirus numbers, our study provided new insights into the mechanism of DHAV-1 propagation.