Autosomal recessive bestrophinopathy (ARB) is a subtype of bestrophinopathy caused by biallelic mutations of the BEST1 gene, which affect the retinal pigment epithelium (RPE). Studying RPE abnormalities through imaging is essential for understanding ARB. This case series involved the use of multimodal imaging techniques, namely autofluorescence (AF) imaging at 488 nm [short-wavelength AF] and 785 nm [near-infrared AF (NIR-AF)] and polarization-sensitive optical coherence tomography (PS-OCT), to investigate RPE changes in 2 siblings with ARB. Two Japanese siblings (Case 1: male, followed for 20-23 years; Case 2: female, followed for 13-17 years) carried compound heterozygous mutations of the BEST1 gene. Both siblings were diagnosed with ARB. Multimodal imaging techniques were used to evaluate RPE changes. Both siblings had funduscopic changes similar to those seen in the vitelliruptive stage of Best vitelliform macular dystrophy during the follow-up period. NIR-AF imaging showed hypo-AF of the entire macular lesion in both cases, and this hypo-AF remained stable over time. PS-OCT confirmed reduced RPE melanin content in these hypo-AF areas. Additionally, hyper-NIR-AF dots were observed within hypo-NIR-AF areas. Concomitant identification of focally thickened RPE melanin on PS-OCT imaging and hyper-AF on short-wavelength AF imaging at the sites containing hyper-NIR-AF dots indicated that the hyper-NIR-AF dots had originated from either stacked RPE cells or RPE dysmorphia. We confirmed RPE abnormalities in ARB, including diffuse RPE melanin damage in the macula alongside evidence of RPE activity-related changes. This case series demonstrates that multimodal imaging, particularly NIR-AF and PS-OCT, provides detailed insights into RPE alterations in ARB.
Read full abstract