Diffusing alpha-emitters radiation therapy ("Alpha-DaRT") is a new method for treating solid tumors with alpha particles, relying on the release of the short-lived alpha-emitting daughter atoms of radium-224 from interstitial sources inserted into the tumor. Alpha-DaRT tumor dosimetry is governed by the spread of radium's progeny around the source, as described by an approximate framework called the "diffusion-leakage model". The most important model parameters are the diffusion lengths of radon-220 and lead-212, and their estimation is therefore essential for treatmentplanning. Previous works have provided initial estimates for the dominant diffusion length, by measuring the activity spread inside mice-borne tumors several days after the insertion of an Alpha-DaRT source. The measurements, taken when lead-212 was in secular equilibrium with radium-224, were interpreted as representing the lead-212 diffusion length. The aim of this work is to provide first experimental estimates for the diffusion length of radon-220, using a newmethodology. The diffusion length of radon-220 was estimated from autoradiography measurements of histological sectionstaken from 24 mice-borne subcutaneous tumors of five different types. Unlike previous studies, the source dwell time inside the tumor was limited to 30 min, to prevent the buildup of lead-212. To investigate the contribution of potential non-diffusive processes, experiments were done in two sets: fourteen in vivo tumors, where during the treatment the tumors were still carried by the mice with active blood supply, and 10 ex-vivo tumors, where the tumors were excised before source insertion and kept in a medium at with the sourceinside. The measured diffusion lengths of radon-220, extracted by fitting the recorded activity pattern up to 1.5mm from the source, lie in the range , with no significant difference between the average values measured in in-vivo and ex-vivo tumors: versus . However, in-vivo tumors display an enhanced spread of activity 2-3mm away from the source. This effect is not explained by the current model and is much less pronounced in ex-vivotumors. The average measured radon-220 diffusion lengths in both in-vivo and ex-vivo tumors are consistent with published data on the diffusion length of radon in water and lie close to the upper limit of the previously estimated range of . The observation that close to the source there is no apparent difference between in-vivo and ex-vivo tumors, and the good agreement with the theoretical model in this region suggest that the spread of radon-220 is predominantly diffusive in this region. The departure from the model prediction in in-vivo tumors at large radial distances may hint at potential vascular contribution, which will be the subject of futureworks.