Tourmaline is known for its natural negative ion effect and far-infrared radiation function, which promote human blood circulation, relieve pain, regulate the endocrine system, and enhance immunity and other functions. These functions motivate the use of this material for enhanced sensitivity of wearable sensors. In this work, taking advantage of the unique multifunctions of tourmaline nanoparticles (Tur), highly boosted piezoelectricity was achieved by incorporating polydopamine (PDA)-modified Tur in PVDF. The PDA@Tur nanofillers not only effectively increased the β-phase content of PVDF but also played a major role in significantly enhancing piezoelectricity, wettability, elasticity, air permeability, and stability of the piezoelectric sensors. Especially, the maximum output voltage of the fiber membrane with 0.5 wt % PDA@Tur reached 31.0 V, being 4 times that of the output voltage of the pure PVDF fiber membrane. Meanwhile, the sensitivity reached 0.7011 V/kPa at 1-10 N, which was 3.6 times that of pure PVDF film (0.196 V/kPa). The power intensity reached 8 μW/cm2, being 5.55 times that of the pristine PVDF PENG (1.44 μW/cm2), and the piezoelectric coefficient from d33 m/PFM is 5.5 pC/N, higher than that of pristine PVDF PENG (3.1 pC/N). Output signal graphs corresponding to flapping, finger, knee, and elbow movements were detected. The response/recovery time of the sensor device was 24/19 ms. The piezoelectric nanogenerator (PENG) was capable of charging multiple capacitors to 2 V within a short time and lighting up 15 light-emitting diodes bulbs (LEDs) simultaneously with a single beat. In addition, a 4 × 4 row-column multiplexed sensor array was made of PENGs, which showed distinct responses to different stress areas in different sensor modules. This study demonstrated high-performance PDA@Tur PVDF-based PENG being capable of energy harvesting and sensing, providing a guideline for the design and buildup of wearable self-powered devices in healthcare and human-computer interaction.
Read full abstract