Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.
Read full abstract