Insufficient sleep can initiate or exacerbate anxiety by triggering excessive fear generalization. In this study, a de novo paradigm was developed and used to examine the neural mechanisms governing the effects of sleep deprivation on processing perceptual and concept-based fear generalizations. A between-subject design was adopted, wherein a control group (who had a typical night's sleep) and a one-night sleep deprivation group completed a fear acquisition task at 9:00 PM on the first day and underwent a generalization test the following morning at 7:00 AM. In the fear acquisition task, navy blue and olive green were used as perceptual cues (P+ and P−, respectively), while animals and furniture items were used as conceptual cues (C+ and C−, respectively). Generalization was tested for four novel generalized categories (C+P+, C+P−, C−P+, and C−P−). Shock expectancy ratings, skin conductance responses, and functional near-infrared spectroscopy were recorded during the fear acquisition and generalization processes. Compared with the group who had a typical night's sleep, the sleep deprived group showed higher shock expectancy ratings (especially for P+ and C−), increased oxygenated hemoglobin in the dorsolateral prefrontal cortex, and increased activation in the triangular inferior frontal gyrus during the generalization test. These findings suggest that sleep deprivation increases the generalization of threat memories, thus providing insights into the overgeneralization characteristics of anxiety and fear-related disorders.