We report a proof that under natural assumptions shock profiles viewed as heteroclinic travelling wave solutions to a hyperbolically regularized system of conservation laws are spectrally stable if the shock amplitude is sufficiently small. This means that an associated Evans function E:Λ→C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {E}:\\Lambda \\rightarrow \\mathbb {C}$$\\end{document} with Λ⊂C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda \\subset \\mathbb {C}$$\\end{document} an open superset of the closed right half plane H+≡{κ∈C:Reκ≧0}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {H}^+\\equiv \\{\\kappa \\in \\mathbb {C}:\ ext {Re}\\,\\kappa \\geqq 0\\}$$\\end{document} has only one zero, namely, a simple zero at 0. The result is analogous to the one obtained in Freistühler and Szmolyan (Arch Ration Mech Anal 164:287–309, 2002) and Plaza and Zumbrun (Discrete Contin Dyn Syst 10(4):885–924, 2004) for parabolically regularized systems of conservation laws, and also distinctly extends findings on hyperbolic relaxation systems in Mascia and Zumbrun (Partial Differ Equ 34(1–3):119–136, 2009), Plaza and Zumbrun (2004) and Ueda (Math Methods Appl Sci 32(4):419–434, 2009).
Read full abstract