Cutaneous melanoma is a malignant tumor with an increasing incidence, prone to recurrence and metastasis. This study aims to explore the effects and mechanisms of the novel shikonin derivative 5,8-dimethyl alkannin oxime derivative (DMAKO-20) on the metastasis and invasion of melanoma cells. The inhibitory effects of DMAKO-20 on the melanoma cell line A375 were investigated through Cell Counting Kit-8 (CCK-8), Transwell and angiogenesis experiments. Network pharmacology and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to explore potential sites and pathways involved in this process. Additionally, quantitative polymerase chain reaction (qPCR) and Western blot experiments were conducted before and after drug treatment to verify the expression trends of related pathways and proteins. DMAKO-20 demonstrated selective inhibition of proliferation, invasion and migration of melanoma cells at low concentrations. The WNT pathway appears to be implicated in this process, as DMAKO-20 effectively attenuates its activation, consequently reducing matrix metalloproteinase 9 (MMP9) and Cellular Communication Network Factor 1 (CCN1)/cysteine-rich angiogenic inducer 61 (CYR61) levels. Such modulation inhibits melanoma dissemination and invasion into other tissues. DMAKO-20 exhibits the capability to suppress metastasis and invasion of melanoma cells, suggesting its potential for clinical application as an adjuvant therapy against melanoma.