Satellite-based monitoring of atmospheric greenhouse gas (GHG) concentrations has emerged as a prominent and globally recognized field of research. With the imminent launch of the Greenhouse-Gases Absorption Spectrometer-2 (GAS-2) on the FengYun3-H (FY3-H) satellite in 2024, there is a promising prospect for substantial advancements in GHG detection capabilities. Crucially, the accurate acquisition of spectral information by GAS-2 is heavily reliant on its instrument parameters. However, the existing body of research predominantly emphasizes the examination of atmospheric parameters and their impact on GHG detection accuracy, thereby leaving a discernible gap in the comprehensive evaluation of instrument parameters specifically concerning the acquisition of atmospheric greenhouse gas concentration data by GAS-2. To address this knowledge gap, our study employs a radiation transfer model grounded in radiation transfer theory. This comprehensive investigation aims to quantitatively analyze the effects of various instrument parameters, encompassing crucial aspects such as spectral resolution, spectral sampling rate, signal-to-noise ratio, radiometric resolution, and spectral calibration accuracy (including instrument line shape function, central wavelength shift, and spectral resolution broadening). Based on our preliminary findings, it is evident that GAS-2 has the necessary spectral resolution, spectral sampling rate, and signal-to-noise ratio, slightly surpassing existing international instruments and enabling a significant detection accuracy level of 1 part per million (ppm). Moreover, it is essential to recognize the critical impact of instrument spectral calibration accuracy on overall detection precision. Among the five commonly used instrument line shape functions, the sinc function has the least impact on detection accuracy. Additionally, GAS-2’s radiance quantization depth is 14 bits, which is comparable to similar international payloads and maintains a root mean squared error below 0.1 ppm, thus ensuring a high level of precision. This study provides a comprehensive evaluation of the influence of GAS-2’s instrument parameters on detection accuracy, offering valuable insights for the future development of spectral calibration, the optimization of similar payload instrument parameters, and the overall improvement of instrument quantification capabilities.
Read full abstract