Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl- adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm-1 is used to track the potential dependence of Cl- adsorption. The potential dependence of the dominant 260 cm-1 component tracks the coverage of the fluctional c(2 × 2) Cl- phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies. As the c(2 × 2) Cl- coverage approaches saturation, a second ν(Cu-Cl) component mode emerges between 290 and 300 cm-1 that coincides with the onset and stiffening of step faceting where Cl- occupies the threefold hollow sites to stabilize the metal kink saturated Cu <100> step edge. The formation of the c(2 × 2) Cl- adlayer is accompanied by the strengthening of ν(O-H) stretching modes in the adjacent non-hydrogen-bonded water at 3600 cm-1 and an increase in hydronium concentration evident in the flanking H2O modes at 3100 cm-1. The polarization of the water molecules and enrichment of hydronium arise from the combination of Cl- anionic character and lateral templating provided by the c(2 × 2) adlayer, consistent with SXRD studies. At negative potentials, Cl- desorption occurs followed by development of a sulfate νs(S═O) band. Below -1.1 V vs Hg/HgSO4, a new 200 cm-1 mode emerges congruent with hydride formation and surface reconstruction reported in electrochemical scanning tunneling microscopy studies.
Read full abstract